Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 385: 5

Answer

The vertex is $(-3,-1)$. The vertical intercept is $(0,8)$. The horizontal intercepts are $(-2,0)$ and $(-4,0)$.

Work Step by Step

The given function is $\Rightarrow f(x)=x^2+6x+8$ The quadratic function in standard form is $\Rightarrow f(x)=ax^2+bx+c$ $a=1,b=6$ and $c=8$ Vertex:- Input values is $x=\frac{-b}{2a}$ Substitute all values. $x=\frac{-6}{2(1)}$ Simplify. $x=-3$ For the output value substitute $x=-3$ into given function. $\Rightarrow f(-3)=(-3)^2+6(-3)+8$ Clear the parentheses. $\Rightarrow f(-3)=9-18+8$ Simplify. $\Rightarrow f(-3)=-1$ The vertex is $(-3,-1)$. Vertical intercept :- Substitute $x=0$ into the given function. $\Rightarrow f(0)=(0)^2+6(0)+8$ Clear the parentheses. $\Rightarrow f(0)=8$ The vertical intercept is $(0,8)$. Horizontal intercept(s):- Substitute $f(x)=0$ into the given function. $\Rightarrow 0=x^2+6x+8$ Use quadratic formula, $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute $a=1,b=6$ and $c=8$ into the formula. $x=\frac{-(6)\pm\sqrt{(6)^2-4(1)(8)}}{2(1)}$ Simplify. $x=\frac{-6\pm\sqrt{36-32}}{2}$ $x=\frac{-6\pm\sqrt{4}}{2}$ $x=\frac{-6\pm2}{2}$ Separate the equations. $x=\frac{-6+2}{2}$ and $x=\frac{-6-2}{2}$ Simplify. $x=\frac{-4}{2}$ and $x=\frac{-8}{2}$ $x=-2$ and $x=-4$ The horizontal intercepts are $(-2,0)$ and $(-4,0)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.