Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 385: 6

Answer

The vertex is $(-6,-64)$. The vertical intercept is $(0,-28)$. The horizontal intercepts are $(2,0)$ and $(-14,0)$.

Work Step by Step

The given function is $\Rightarrow g(x)=x^2+12x-28$ The quadratic function in standard form is $\Rightarrow f(x)=ax^2+bx+c$ $a=1,b=12$ and $c=-28$ Vertex:- Input values is $x=\frac{-b}{2a}$ Substitute all values. $x=\frac{-12}{2(1)}$ Simplify. $x=-6$ For the output value substitute $x=-3$ into given function. $\Rightarrow f(-6)=(-6)^2+12(-6)-28$ Clear the parentheses. $\Rightarrow f(-6)=36-72-28$ Simplify. $\Rightarrow f(-6)=-64$ The vertex is $(-6,-64)$. Vertical intercept :- Substitute $x=0$ into the given function. $\Rightarrow f(0)=(0)^2+12(0)-28$ Clear the parentheses. $\Rightarrow f(0)=-28$ The vertical intercept is $(0,-28)$. Horizontal intercept(s):- Substitute $f(x)=0$ into the given function. $\Rightarrow 0=x^2+12x-28$ Use quadratic formula, $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ Substitute $a=1,b=12$ and $c=-28$ into the formula. $x=\frac{-(12)\pm\sqrt{(12)^2-4(1)(-28)}}{2(1)}$ Simplify. $x=\frac{-12\pm\sqrt{144+112}}{2}$ $x=\frac{-12\pm\sqrt{256}}{2}$ $x=\frac{-12\pm16}{2}$ Separate the equations. $x=\frac{-12+16}{2}$ and $x=\frac{-12-16}{2}$ Simplify. $x=\frac{4}{2}$ and $x=\frac{-28}{2}$ $x=2$ and $x=-14$ The horizontal intercepts are $(2,0)$ and $(-14,0)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.