Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 385: 14

Answer

Vertex: $(-6.67,-48.33)$ Vertical intercept: $(0,-15)$ Horizontal intercepts: $(-14.69,0),(1.36,0)$

Work Step by Step

Given $$ g(x)=0.75 x^2+10 x-15. $$ The parabola is in its standard form, $f(x) = ax^2+bx+c$. The values of the constants are: $$ \begin{aligned} a&=0.75 \\ b&=10 \\ c&=-15. \end{aligned} $$ Find the $x$ and $y$ coordinates of the vertex. $$\begin{align*} x &=\frac{-b}{2 a}=\frac{-10}{2(0.75)}\approx-6.667\\ y & \approx 0.75(-6.667)^2+10(-6.667)-15 \\ & \approx -48.33 \end{align*} $$ $$ \text { Vertex: }(-6.67,-48.33). $$ Find the vertical intercept. $$ \begin{aligned} &y=c=-15\\ &\text { Vertical intercept: }(0,-15). \end{aligned} $$ Find the horizontal intercept by setting $y= 0$ to find the $x$ values. $$ \begin{aligned} \frac{0.75 x^2+10 x-15}{0.75}&=\frac{0}{0.75} \\ x^2+\frac{1000}{75} x-20&=0 \\ x^2+\frac{40}{3} x+\left(\frac{40}{6}\right)^2&=20+\left(\frac{40}{6}\right)^2\\ \left(x+\frac{40}{6}\right)^2& =\frac{36 \cdot 20}{36}+\frac{1600}{36} \\ \left(x+\frac{40}{6}\right)^2&=\frac{720+1600}{36} \\ \left(x+\frac{40}{6}\right)^2&=\frac{2320}{36}\\ \left(x+\frac{40}{6}\right)&= \pm \frac{\sqrt{2320}}{6}\\ x&=-\frac{40}{6} \pm \frac{\sqrt{2320}}{6} \end{aligned} $$ The solutions are: $$ \begin{aligned} x & =-\frac{40-\sqrt{2320}}{6} \\ & \approx 1.36\\ x & =-\frac{40+\sqrt{2320}}{6} \\ & \approx -14.69. \end{aligned} $$ $$ \text { Horizontal intercepts: }(-14.69,0),(1.36,0). $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.