Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 4 - Quadratic Functions - 4.7 Graphing Quadratics from Standard Form - 4.7 Exercises - Page 385: 12

Answer

Vertex: $(1.83,-9.92)$ Vertical intercept: $(0,-20)$ Horizontal intercepts: None

Work Step by Step

Given $$ h(x)=-3 x^2+11 x-20. $$ The parabola is in its standard form, $f(x) = ax^2+bx+c$. The values of the constants are: $$ \begin{aligned} a&=-3 \\ b&=11 \\ c&=-20. \end{aligned} $$ Find the $x$ and $y$ values of the vertex. $$ \begin{aligned} x & =\frac{-b}{2 a} \\ & =\frac{-(11)}{2(-3)} \\ & =\frac{11}{6} \\ & \approx 1.83. \end{aligned} $$ $$\begin{aligned} y & =-3\left(\frac{11}{6}\right)^2+11\left(\frac{11}{6}\right)-20 \\ & \approx-9.92\end{aligned}$$ The vertex is: $$ \text { Vertex: }(1.83,-9.92). $$ Find the vertical intercept. $$ \begin{aligned} &y=c=-20\\ &\text {Vertical intercept: }(0,-20) \end{aligned} $$ Find the horizontal intercept by setting $y= 0$ to find the $x$ values. $$ \begin{aligned} \frac{-3 x^2+11 x-20}{-3} & =\frac{0}{-3} \\ x^2-\frac{11}{3} x+\frac{20}{3} & =0 \\ x^2-\frac{11}{3} x+\left(\frac{11}{6}\right)^2 & =-\frac{20}{3}+\left(\frac{11}{6}\right)^2\\ \left(x-\frac{11}{6}\right)^2 & =\frac{121}{36}-\frac{20}{3} \cdot \frac{12}{12} \\ \left(x-\frac{11}{6}\right)^2 & =\frac{121-240}{36} \\ \left(x-\frac{11}{6}\right)^2 & =-\frac{119}{36} \end{aligned} $$ There is no horizontal intercept since we cannot take the square root of a negative number.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.