Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 5 - Inner Product Spaces - 5.2 Inner Product Spaces - 5.2 Exercises - Page 245: 34

Answer

see the proof below.

Work Step by Step

For any $p(x)=a_0+a_1x+...+a_nx^n, q(x)=b_0+b_1x+...+b_nx^n, r(x)=c_0+c_1x+...+c_nx^n \in P_n , k \in {R}$ (1) $\langle p,q\rangle=a_0^2+a_1^2+...+a_n^n>0$ and $\langle p,p\rangle=a_0^2+a_1^2+...+a_n^2=0$ if and only if $a_0=0$, $a_1=0$, ...,$a_n=0$. (2) \begin{align*} \langle p,q\rangle&= a_0b_0+a_1b_1+...+a_nb_n\\ &=b_0 a_0+ b_1a_1+...+b_na_n\\ &=\langle q,p\rangle. \end{align*} (3) \begin{align*} \langle p,q\rangle&= ka_0b_0+ka_1b_1+...+ka_nb_n\\ &=k(a_0b_0+a_1b_1+...+a_nb_n)\\ &=k\langle p,q\rangle. \end{align*} (4) \begin{aligned} \langle p+q, r\rangle &=\left\langle\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+...+\left(a_{n}+b_{n}\right) x^{n}, c_{0}+c_{1} x+...+c_{n} x^{n}\right\rangle \\ &=\left(a_{0}+b_{0}\right) c_{0}+ \left(a_{1}+b_{1}\right) c_{1}+...+\left(a_{n}+b_{n}\right) c_{n} \\ &=\left(a_{0} c_{0}+2 a_{1} c_{1}+...+a_{n} c_{n}\right)+\left(b_{0} c_{0}+ b_{1} c_{1}+...+b_{n} c_{n}\right) \\ &=\langle p, r\rangle+\langle q, r\rangle . \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.