Elementary Linear Algebra 7th Edition

Published by Cengage Learning
ISBN 10: 1-13311-087-8
ISBN 13: 978-1-13311-087-3

Chapter 5 - Inner Product Spaces - 5.2 Inner Product Spaces - 5.2 Exercises - Page 245: 33

Answer

see the proof below.

Work Step by Step

For any $p(x)=a_0+a_1x+a_1x^2, q(x)=b_0+b_1x+b_2x^2, r(x)=c_0+c_1x+c_2x^2 \in P_2 , k \in {R}$ (1) $\langle p,q\rangle=a_0^2+2a_1^2+a_3^2>0$ and $\langle p,p\rangle=a_0^2+2a_1^2+a_3^2=0$ if and only if $a_0=0$, $a_1=0$, $a_2=0$. (2) \begin{align*} \langle p,q\rangle&= a_0b_0+2a_1b_1+a_2b_2\\ &=b_0 a_0+2b_1a_1+b_2a_2\\ &=\langle q,p\rangle. \end{align*} (3) \begin{align*} \langle p,q\rangle&= ka_0b_0+2ka_1b_1+ka_2b_2\\ &=k(a_0b_0+2a_1b_1+a_2b_2)\\ &=k\langle p,q\rangle. \end{align*} (4) \begin{aligned} \langle p+q, r\rangle &=\left\langle\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}, c_{0}+c_{1} x+c_{2} x^{2}\right\rangle \\ &=\left(a_{0}+b_{0}\right) c_{0}+2\left(a_{1}+b_{1}\right) c_{1}+\left(a_{2}+b_{2}\right) c_{2} \\ &=\left(a_{0} c_{0}+2 a_{1} c_{1}+a_{2} c_{2}\right)+\left(b_{0} c_{0}+2 b_{1} c_{1}+b_{2} c_{2}\right) \\ &=\langle p, r\rangle+\langle q, r\rangle . \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.