Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 42

Answer

See below

Work Step by Step

Apply Cramer's Rule for a $3 \times 3$ system $Ax=b$ where $A=\begin{bmatrix} a_1 & b_1 & c_1\\a_2 & b_2 & c_2\\a_3 & b_3 & c_3 \end{bmatrix}$ and $b=\begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$ Obtain $x_1=\frac{\begin{vmatrix} d_1 &b_1 & c_1\\d_2 &b_2 &c_2\\d_3 &b_3 & c_3 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 & c_1\\a_2 & b_2 &c_2\\a_3 & b_3 & c_3 \end{vmatrix}}=\frac{\begin{vmatrix} -1 & 1& 2\\ -1& -1& 1\\-5 & 5 & 5 \end{vmatrix}}{\begin{vmatrix} 3& 1 & 2\\ 2&-1& 1\\ 0 & 5 & 5 \end{vmatrix}}=\frac{10}{20}=\frac{1}{2}$ $x_2=\frac{\begin{vmatrix} a_1 & d_1 & c_1\\a_2 & d_2 &c_2 \\a_3 &d_3 & c_3 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 & c_1\\a_2 & b_2 &c_2\\a_3 & b_3 & c_3 \end{vmatrix}}=\frac{\begin{vmatrix} 3 & -1& 2\\ 2&-1 & 1\\ 0& -5 & 2 \end{vmatrix}}{\begin{vmatrix} 3 & 1 & 2\\ 2& -1 &1\\0 & 5&5 \end{vmatrix}}=\frac{10}{20}=\frac{1}{2}$ $x_3=\frac{\begin{vmatrix} a_1 &b_1 & d_1\\a_2 &b_2 & d_2\\ a_3 &b_3 & d_3 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1 & c_1\\a_2 & b_2 &c_2\\a_3 & b_3 & c_3 \end{vmatrix}}=\frac{\begin{vmatrix} 3 & 1& -1\\2 &-1 & -1\\0 & 5 & -5 \end{vmatrix}}{\begin{vmatrix} 3 & 1 & 2\\ 2&-1&1\\0 & 5&5 \end{vmatrix}}=-\frac{30}{20}=-\frac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.