Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 25

Answer

0

Work Step by Step

We are given: $C=\begin{bmatrix} 1 & 0 & 5\\ 3& -1 & 4\\ 2 & -2 & 6 \end{bmatrix}$ $\rightarrow C^{-1}=\begin{bmatrix} \frac{5}{9} &\frac{2}{9} &\frac{-5}{18} \\ \frac{-1}{9} &\frac{5}{9} &\frac{-11}{18} \\ \frac{2}{9} &\frac{-1}{9} &\frac{1}{18} \end{bmatrix}$ $\det(C^{-1})=\begin{vmatrix} \frac{1}{3} & \frac{1}{54}\\ \frac{-1}{9} & \frac{-1}{27} \end{vmatrix}=\frac{-5}{486}$ We know that: $\det(AB)=\det(A)\det(B)$ Hence here: $\det(C^{-1}BA)=\det(C^{-1})\det(BA)=\frac{-5}{486}.0=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.