Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 31

Answer

See below

Work Step by Step

Given: $A=\begin{bmatrix} 5 & 8 & 16\\4 & 1 & 8\\-4 & -4& -11 \end{bmatrix}$ We will use Cofactor Expansion Theorem to find the determinant of this matrix. $\det(A)=\sum^n_{j=1}a_{kj}C_{kj}\\ \det(A)=\sum^n_i=1 a_{ik}C_{ik}$ Then $\rightarrow \det(A)=5\begin{vmatrix} 5 & 8\\-4 &-11 \end{vmatrix}-4\begin{vmatrix} 8 & 16\\-4 &-11 \end{vmatrix}+(-4)5\begin{vmatrix} 8 & 16\\1 &8 \end{vmatrix}\\ =5[2(1.(-11)-8.(-4))-4(8.(-11)-16.(-4)]\\ =9$ By using adjoint method, we have $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{\det(A)}C^T$ where $C$ is cofactor matrix. Obtain: $adj(A)=\begin{bmatrix} 21&24&48\\12 & 9 & 24\\-12 & -12 &-27 \end{bmatrix}$ Consequently, $A^{-1}=\frac{1}{9}\begin{bmatrix} 21&24&48\\12 & 9 & 24\\-12 & -12 &-27 \end{bmatrix}=\begin{bmatrix} \frac{7}{3}& \frac{8}{3}&\frac{16}{3} \\\frac{4}{3}& 1 & \frac{8}{3} \\\frac{-4}{3}&\frac{-4}{3}& -3 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.