Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 27

Answer

See below

Work Step by Step

Given: $A=\begin{bmatrix} 1 & 2 \\ 3 &4 \end{bmatrix}\\ \rightarrow \det(A)=1.4-2.3=-2$ $B=\begin{bmatrix} 1 & 1\\ 1 &1 \end{bmatrix}\\ \rightarrow \det(B)=5.1-4.1=1 \ne 0$ By Theorem 3.3.16, we have $B^{-1}=\frac{1}{\det(B)}adj(B)=\frac{1}{1}adj(B)=adj(B)$ Obtain: $C_{11}=(-1)^{1+1}M_{11}=1\\ C_{12}=(-1)^{1+2}M_{12}=-1\\ C_{21}=(-1)^{2+1}M_{21}=-4\\ C_{22}=(-1)^{2+2}M_{22}=5$ hence, $M_C=\begin{bmatrix} 1 & -1\\ -4 & 5 \end{bmatrix}\\ \rightarrow adj(B)=M^T_C=\begin{bmatrix} 1 & -4\\-1 & 5 \end{bmatrix}$ Find $B^{-1}=\begin{bmatrix} 1 & -4\\-1 & 5 \end{bmatrix}$ Since $\det(B^T)=\det(B)\ne 0$ then $B^T$ is invertible and $A^{-1}B^T$ is also invertible. Hence, $(A^{-1}B^T)^{-1}\\=(B^T)^{-1}(A^{-1})^{-1}\\=(B^{-1})^T A\\=\begin{bmatrix} 1 &-1 \\-4 & 5 \end{bmatrix}\begin{bmatrix} 1 & 2 \\3 &4 \end{bmatrix}=\begin{bmatrix} -2 & -2\\11 & 12 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.