Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 32

Answer

See below

Work Step by Step

Given: $A=\begin{bmatrix} 2 &6 &6\\2 & 7&6\\2&7&7 \end{bmatrix}$ We will use Cofactor Expansion Theorem to find the determinant of this matrix. $\det(A)=\sum^n_{j=1}a_{kj}C_{kj}\\ \det(A)=\sum^n_i=1 a_{ik}C_{ik}$ Then $\rightarrow \det(A)=2\begin{vmatrix} 7 & 6\\7 &7 \end{vmatrix}-2\begin{vmatrix} 6 & 6\\7 &7 \end{vmatrix}+2\begin{vmatrix} 6 & 6\\7 &6 \end{vmatrix}\\ =2(7.7-6.7)-2(6.7-6.7)+2(6.6-6.7)\\ =2$ By using adjoint method, we have $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{\det(A)}C^T$ where $C$ is cofactor matrix. Obtain: $adj(A)=\begin{bmatrix} 7 &0 & -6\\-2 & 2 &0\\0&-2&2 \end{bmatrix}$ Consequently, $A^{-1}=\frac{1}{2}\begin{bmatrix} 7 &0 & -6\\-2 & 2 &0\\0&-2&2 \end{bmatrix}=\begin{bmatrix} \frac{7}{2}& 0& -3\\-1& 1 & 0 \\0 & -1 &1 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.