Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 33

Answer

See below

Work Step by Step

Given: $A=\begin{bmatrix} 4 &-1 &0\\5 &1 &4 \end{bmatrix}$ Adding one row $\begin{vmatrix} a&b&c \end{vmatrix}$ to matrix we have $\det(B)=\begin{vmatrix} 4 &-1 & 0 \\5 &1 &4\\ a &b &c \end{vmatrix}=10\\ \rightarrow a\begin{vmatrix} -1 &0\\1 &4 \end{vmatrix}-b\begin{vmatrix} 4&0 \\5&4 \end{vmatrix}+c\begin{vmatrix} 4 &-1\\5 &1 \end{vmatrix}=-4a-16b+9c=10$ Assume that $a=-\frac{5}{2},b=0,c=0$ Substitute: $-4(-\frac{5}{2})-16(0)+9(0)=10$ Consequently, matrix (B) can be $B=\begin{bmatrix} 4 &-1 &0\\5 &1 &4\\-\frac{2}{5}& 0 & 0 \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.