Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 29

Answer

See below

Work Step by Step

Given: $A=\begin{bmatrix} 0 & -3 & 2 & 2\\0 & 1 & 1 & 1\\1 & 2& 3&-4\\1&0&0&5 \end{bmatrix}$ We will use Cofactor Expansion Theorem to find the determinant of this matrix. $\det(A)=\sum^n_{j=1}a_{kj}C_{kj}\\ \det(A)=\sum^n_i=1 a_{ik}C_{ik}$ Then $\rightarrow \det(A)=1\begin{vmatrix} -3&2&2 \\1& 1&1 \\0&0&5 \end{vmatrix}-1.\begin{vmatrix} -3 & 2 & 2\\1&1&1\\2 & 3 & -4 \end{vmatrix}\\ =1[-3(1.(-5)-1.0)-1.(2.5-2.0)+0.(2.1-2.1)]-[-3.(1.(-4)-1.3)-1.(2.(-4)-2.3)+2.(2.1-2.1)]\\ =-60$ By using adjoint method, we have $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{\det(A)}C^T$ where $C$ is cofactor matrix. Obtain: $adj(A)=\begin{bmatrix} \begin{vmatrix} 1&1 &1\\2&3&-4\\0&0&5 \end{vmatrix} & -\begin{vmatrix} 0&& 1&1\\1&3 &-4\\1&0&5 \end{vmatrix} & \begin{vmatrix} 0&1&1\\1&2&-4\\1&0&5 \end{vmatrix} &- \begin{vmatrix} 0&1&1\\1&2&3\\1&0&0 \end{vmatrix}\\-\begin{vmatrix} -3&2&2\\2&3 &-4\\0&0&5 \end{vmatrix} & \begin{vmatrix} 0 &2&2\\1&3 &-4\\1&0&5 \end{vmatrix} & -\begin{vmatrix} 0-3&2\\1&2&-4\\1&0&5 \end{vmatrix}&\begin{vmatrix} 0&-3&2\\1&2&3\\1&0&0 \end{vmatrix}\\\begin{vmatrix} -3&2 & 2\\1&1&1\\0&0&5 \end{vmatrix}&-\begin{vmatrix} 0&2&2\\0&1 & 1\\1&0&5 \end{vmatrix}&\begin{vmatrix} 0&-3 & 2\\0&1 & 1\\1&0&5 \end{vmatrix}&\begin{vmatrix} 0&-3&2\\0&1&1\\1&0&5 \end{vmatrix}\\-\begin{vmatrix} -3&2&2\\1&1&1\\2&3&-4 \end{vmatrix}& \begin{vmatrix} 0&2&2\\0&1&1\\1&3&-4 \end{vmatrix} & -\begin{vmatrix} 0& -3&2\\0 &1& 1\\1&2& -4 \end{vmatrix} & \begin{vmatrix} 0&-3&2\\0&1&1\\1&2&3 \end{vmatrix}\end{bmatrix}^T\\ =\begin{bmatrix} 5&65&-25&-35\\12& -24&0 &0 \\-11&-23& -5 & 5\\-1 & -13 &5 &-5 \end{bmatrix}$ Consequently, $A^{-1}=\frac{-1}{60}\begin{bmatrix} 5&65&-25&-35\\12& -24&0 &0 \\-11&-23& -5 & 5\\-1 & -13 &5 &-5 \end{bmatrix}=\begin{bmatrix} \frac{-1}{12}& \frac{-13}{12}&\frac{5}{12} &\frac{7}{12}\\\frac{-1}{12}& \frac{2}{5}& 0 & 0 \\\frac{11}{60}&\frac{23}{60}& \frac{1}{12} &-\frac{1}{12} \\\frac{1}{60} &\frac{13}{60} & \frac{-1}{12} &\frac{1}{12} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.