Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 28

Answer

See below

Work Step by Step

Given: $A=\begin{bmatrix} 2 & -1 & 1\\0 & 5 & -1\\1 & 1 & 3 \end{bmatrix}$ We will use Cofactor Expansion Theorem to find the determinant of this matrix. $\det(A)=\sum^n_{j=1}a_{kj}C_{kj}\\ \det(A)=\sum^n_i=1 a_{ik}C_{ik}$ Then $\rightarrow \det(A)=2\begin{vmatrix} 5&-1 \\1&3 \end{vmatrix}+1.\begin{vmatrix} -1 &1 \\5&-1 \end{vmatrix}\\ =2.[5.3-(-1).1]+1.[-1.(-1)-1.5]\\ =28$ By using adjoint method, we have $A^{-1}=\frac{1}{\det(A)}adj(A)=\frac{1}{\det(A)}C^T$ where $C$ is cofactor matrix. Obtain: $adj(A)=\begin{bmatrix} \begin{vmatrix} 5&-1\\1&3 \end{vmatrix} & -\begin{vmatrix} 0&-1\\1&3 \end{vmatrix} & \begin{vmatrix} 0&5\\1&1 \end{vmatrix}\\-\begin{vmatrix} -1&1\\1&3 \end{vmatrix} & \begin{vmatrix} 2&1\\1&3 \end{vmatrix} & -\begin{vmatrix} 2&-1\\1&1 \end{vmatrix}\\\begin{vmatrix} -1&1\\5&-1 \end{vmatrix}&\begin{vmatrix} 2&1\\0&-1 \end{vmatrix}&\begin{vmatrix} 2&-1\\0&5 \end{vmatrix}\end{bmatrix}^T\\ =\begin{bmatrix} 16& 4&-4\\-1& 5&2 \\-5&-2&10 \end{bmatrix}$ Consequently, $A^{-1}=\frac{1}{28}\begin{bmatrix} 16& 4&-4\\-1& 5&2 \\-5&-2&10 \end{bmatrix}=\begin{bmatrix} \frac{4}{7}& \frac{1}{7}&\frac{4}{7}\\\frac{-1}{28}& \frac{5}{28}&\frac{1}{14} \\-\frac{5}{28}&-\frac{3}{28}& \frac{1}{14} \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.