Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 3 - Determinants - 3.5 Chapter Review - Additional Problems - Page 244: 40

Answer

See below

Work Step by Step

Apply Cramer's Rule for a $2 \times 2$ system $Ax=b$ where $A=\begin{bmatrix} a_1 & b_1\\a_2 & b_2 \end{bmatrix}$ and $b=\begin{bmatrix} c_1 \\c_2 \end{bmatrix}$ Obtain $x_1=\frac{\begin{vmatrix} c_1 &b_1\\c_2 &b_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1\\a_2 & b_2 \end{vmatrix}}=\frac{\begin{vmatrix} 3 &1\\1&2 \end{vmatrix}}{\begin{vmatrix} -3 & 1\\1&2 \end{vmatrix}}=-\frac{5}{7}$ $x_1=\frac{\begin{vmatrix} a_1 & c_1\\a_2 &c_2 \end{vmatrix}}{\begin{vmatrix} a_1 & b_1\\a_2 & b_2 \end{vmatrix}}=\frac{\begin{vmatrix} -3 &3\\1&1 \end{vmatrix}}{\begin{vmatrix} -3 & 1\\1&2 \end{vmatrix}}=\frac{6}{7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.