College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 1, Equations and Graphs - Section 1.5 - Complex Numbers - 1.5 Exercises - Page 131: 86

Answer

$i^1=i$ $i^2=-1$ $i^3=-i$ $i^4=1$ $i^5=i$ $i^6=-1$ $i^7=-i$ $i^8=1$ $i^9=i$ $i^{10}=-1$ $i^{11}=-i$ $i^{12}=1$ We also get $i^{4446}=-1$.

Work Step by Step

$i^1=i$ $i^2=i\cdot i=\sqrt{-1}\cdot \sqrt{-1}=-1$ $i^3=i^2\cdot i=-1\cdot i=-i$ $i^4=i^2\cdot i^2=(-1)(-1)=1$ $i^5=i^4\cdot i=1\cdot i=i$ $i^6=i^5\cdot i=i\cdot i=i^2=-1$ $i^7=i^6\cdot i=-1\cdot i=-i$ $i^8=i^4\cdot i^4=1\cdot 1=1$ $i^9=i^8\cdot i=1\cdot i=i$ $i^{10}=i^9\cdot i=i\cdot i=i^2=-1$ $i^{11}=i^{10}\cdot i=-1\cdot i=-i$ $i^{12}=i^{8}\cdot i^4=1\cdot 1=1$ From these calculations we get the pattern, $i^{4k+1}=i$ $i^{4k+2}=-1$ $i^{4k+3}=-i$ $i^{4k}=1$ Using this discovered, $i^{4446}=i^{4\cdot 1111+2}=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.