College Algebra (6th Edition)

Published by Pearson
ISBN 10: 0-32178-228-3
ISBN 13: 978-0-32178-228-1

Chapter 7 - Conic Sections - Exercise Set 7.2 - Page 686: 47

Answer

See graph

Work Step by Step

We are given the hyperbola: $4x^2-9y^2-16x+54y-101=0$ Bring the equation to the standard form: $(4x^2-16x+16)-(9y^2-54y+81)-16+81-101=0$ $4(x^2-4x+4)-9(y^2-6y+9)-36=0$ $4(x-2)^2-9(y-3)^2=36$ $\dfrac{4(x-2)^2}{36}-\dfrac{9(y-3)^2}{36}=1$ $\dfrac{(x-2)^2}{9}-\dfrac{(y-3)^2}{4}=1$ The equation is in the standard form: $\dfrac{(x-h)^2}{a^2}-\dfrac{(y-k)^2}{b^2}=1$ The transverse axis is parallel to the $x$-axis. Determine $h,k,a,b,c$: $h=2$ $k=3$ $a^2=9\Rightarrow a=\sqrt 9=3$ $b^2=4\Rightarrow b=\sqrt 4=2$ $c^2=a^2+b^2$ $c^2=9+4$ $c^2=13$ $c=\sqrt{13}$ The centre of the hyperbola is: $(h,k)=(2,3)$ Determine the coordinates of the vertices: $(h-a,k)=(2-3,3)=(-1,3)$ $(h+a,k)=(2+3,3)=(5,3)$ Determine the coordinates of the foci: $(h-c,k)=(2-\sqrt{13},3)$ $(h+c,k)=(2+\sqrt{13},3)$ Determine the asymptotes: $y-k=\pm\dfrac{b}{a}(x-h)$ $y-3=\pm\dfrac{2}{3}(x+2)$ Graph the hyperbola:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.