Algebra: A Combined Approach (4th Edition)

Published by Pearson
ISBN 10: 0321726391
ISBN 13: 978-0-32172-639-1

Chapter 11 - Section 11.3 - Solving Equations by Using Quadratic Methods - Exercise Set - Page 788: 54

Answer

$z=\frac {i\sqrt 2}{2}, \frac {-i\sqrt 2}{2}, \frac {i\sqrt {5}}{2}, \frac {-i\sqrt {5}}{2}$

Work Step by Step

$8z^4+14z^2=-5$ $z^2=x$ $8z^4+14z^2=-5$ $8(z^2)^2+14z^2=-5$ $8x^2+14x+5=0$ $x=(-b±\sqrt {b^2-4ac})/2a$ $x=(-14±\sqrt {14^2-4*8*5})/2*8$ $x=(-14±\sqrt {196-32*5})/16$ $x=(-14±\sqrt {196-160})/16$ $x=(-14±\sqrt {36})/16$ $x=(-14±6)/16$ $x=(-14±6)/16$ $x=(-14+6)/16$ $x=(-8/16)$ $x=-1/2$ $x=(-14±6)/16$ $x=(-14-6)/16$ $x=-20/16$ $x=-5/4$ $x=-1/2$ $x=-5/4$ $z^2=x$ $z^2=-1/2$ $\sqrt {z^2}=\sqrt {-1/2}$ $z=\sqrt {-1*1/2}$ $z=\frac {\sqrt {-1*1}}{\sqrt 2}$ $z=\frac {i\sqrt {1}}{\sqrt 2}$ $z=\frac {±i}{\sqrt 2}$ $z=\frac {±i*\sqrt 2}{\sqrt 2*\sqrt 2}$ $z=\frac {±i*\sqrt 2}{2}$ $z^2=-5/4$ $\sqrt {z^2}=\sqrt {-5/4}$ $z=\sqrt {-1*5/4}$ $z=\frac {\sqrt {-1*5}}{\sqrt 4}$ $z=\frac {±i\sqrt {5}}{\sqrt 4}$ $z=\frac {±i\sqrt {5}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.