Answer
$x=-3$
Work Step by Step
$\frac{x}{x-1} + \frac{1}{x+1} = \frac{2}{x^2-1}$
$(x-1)(x+1)*\frac{x}{x-1} + (x-1)(x+1)*\frac{1}{x+1} = (x-1)(x+1)*\frac{2}{x^2-1}$
$(x+1)*x+1*(x-1)=2$
$x^2+x+x-1=2$
$x^2+2x-1=2$
$x^2+2x-3=0$
$(x+3)(x-1)=0$
$x+3=0$
$x=-3$
$x-1=0$
$x=1$
$x=1$ cannot be a solution as the first fraction would be $1/0$, making the problem unsolvable.