Answer
The magnitude of the angular momentum is $~~308~kg~m^2/s$
Work Step by Step
We can find the rotational inertia:
$I = \frac{1}{3}ML^2$
$I = \frac{1}{3}(\frac{10.0~N}{9.8~m/s^2})(6.00~m)^2$
$I = 12.24~kg~m^2$
We can express the angular speed in units of $rad/s$:
$\omega = (240~rev/min)(\frac{1~min}{60~s})(\frac{2\pi~rad}{1~rev}) = (8\pi)~rad/s$
We can find the magnitude of the angular momentum:
$L = I~\omega$
$L = (12.24~kg~m^2)(8\pi~rad/s)$
$L = 308~kg~m^2/s$
The magnitude of the angular momentum is $~~308~kg~m^2/s$.