Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 11 - Rolling, Torque, and Angular Momentum - Problems - Page 322: 30c

Answer

$\tau = (-8.00~N\cdot m)~\hat{i}-(26.0~N\cdot m)~\hat{j}-(40.0~N\cdot m)~\hat{k}$

Work Step by Step

We can write the general form of a cross-product: $a\times b = (a_yb_z-b_ya_z)~\hat{i}+(a_zb_x-b_za_x)~\hat{j}+(a_xb_y-b_xa_y)~\hat{k}$ We can express the object's position in unit-vector notation: $d = (2.00~m)~\hat{i}+ (4.00~m)~\hat{j}- (3.00~m)~\hat{k}$ We can express the force in unit-vector notation: $F = (6.00~N)~\hat{i}-(8.00~N)~\hat{j}+(4.00~N)~\hat{k}$ We can find the torque about the origin: $\tau = d \times F$ $\tau = [(4.00~m)(4.00~N)-(-8.00~N)(-3.00~m)]~\hat{i}+[(-3.00~m)(6.00~N)-(4.00~N)(2.00~m)]~\hat{j}+[(2.00~m)(-8.00~N)-(6.00~N)(4.00~m)]~\hat{k}$ $\tau = (-8.00~N\cdot m)~\hat{i}-(26.0~N\cdot m)~\hat{j}-(40.0~N\cdot m)~\hat{k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.