Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 11 - Rolling, Torque, and Angular Momentum - Problems - Page 322: 24a

Answer

$\tau = (6.0~N\cdot m)~\hat{i}-(3.0~N\cdot m)~\hat{j}-(6.0~N\cdot m)~\hat{k}$

Work Step by Step

We can write the general form of a cross-product: $a\times b = (a_yb_z-b_ya_z)~\hat{i}+(a_zb_x-b_za_x)~\hat{j}+(a_xb_y-b_xa_y)~\hat{k}$ We can express the jar's position in unit-vector notation: $r = (3.0~m)~\hat{i}- (2.0~m)~\hat{j}+ (4.0~m)~\hat{k}$ We can express the force in unit-vector notation: $F =(3.0~N)~\hat{i}-(4.0~N)~\hat{j}+(5.0~N)~\hat{k}$ We can find the torque about the origin on the jar: $\tau = r \times F$ $\tau = [(-2.0~m)(5.0~N)-(-4.0~N)(4.0~m)]~\hat{i}+[(4.0~m)(3.0~N)-(5.0~N)(3.0~m)]~\hat{j}+[(3.0~m)(-4.0~N)-(3.0~N)(-2.0~m)]~\hat{k}$ $\tau = (6.0~N\cdot m)~\hat{i}-(3.0~N\cdot m)~\hat{j}-(6.0~N\cdot m)~\hat{k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.