Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 11 - Rolling, Torque, and Angular Momentum - Problems - Page 322: 22

Answer

$F_x= -5.00~N$

Work Step by Step

We can write the general form of a cross-product: $a\times b = (a_yb_z-b_ya_z)~\hat{i}+(a_zb_x-b_za_x)~\hat{j}+(a_xb_y-b_xa_y)~\hat{k}$ We can express the particle's position in unit-vector notation: $r = (2.00~m)~\hat{i}+(-3.00~m)~\hat{j}+ (2.00~m)~\hat{k}$ We can express the force in unit-vector notation: $F = F_x~\hat{i}+(7.00~N)~\hat{j}+(-6.00~N)~\hat{k}$ We can find the torque about the origin on the particle: $\tau = r \times F$ $\tau = [(-3.00~m)(-6.00~N)-(7.00~N)(2.00~m)]~\hat{i}+ [(2.00~m)F_x-(-6.00~N)(2.00~m)]~\hat{j}+ [(2.00~m)(7.00~N)-F_x~(-3.00~m)]~\hat{k}$ $\tau = (4.00~N\cdot m)~\hat{i}+ (2.00~F_x+12.0~N\cdot m)~\hat{j}+ (14.0~N\cdot m+3.00~F_x)~\hat{k}$ It is given that: $\tau = (4.00~N\cdot m)~\hat{i}+ (2.00~N\cdot m)~\hat{j}-(1.00~N\cdot m)~\hat{k}$ Therefore: $2.00~F_x+12.0~N\cdot m = 2.00~N\cdot m$ $2.00~F_x= -10.0~N\cdot m$ $F_x= -5.00~N$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.