Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 8 - Section 8.3 - Polar Form of Complex Numbers; De Moivre's Theorem - 8.3 Exercises - Page 610: 70

Answer

$\displaystyle \frac{1}{2048}-\frac{\sqrt{3}}{2048}i$

Work Step by Step

See p. 606, If $z=r(\cos\theta+i\sin\theta)$, then for any integer $n$ $z^{n}=r^{n}(\cos n\theta+i\sin n\theta)$ ----------- $z=\sqrt{3}-i$ $\theta$ terminates in quadrant IV $r=\sqrt{3+1}=2$ $\displaystyle \tan\theta=\frac{-1}{\sqrt{3}} \Rightarrow \displaystyle \theta=\frac{11\pi}{6}$. $z=2(\displaystyle \cos\frac{11\pi}{6}+i\sin\frac{11\pi}{6})$ $z^{-10}=(2)^{-10}(\displaystyle \cos(-10\cdot\frac{11\pi}{6})+i\sin(-10\cdot\frac{11\pi}{6}))$ $=(2)^{-10}(\displaystyle \cos\frac{-55\pi}{3}+i\sin\frac{-55\pi}{3})$ With $\displaystyle \cos(\frac{-55\pi}{3})=\cos(\frac{55\pi}{3})=\cos(\frac{\pi}{3}+18\pi)=\frac{1}{2},$ $\displaystyle \sin(\frac{-55\pi}{3})=-\sin(\frac{55\pi}{3})=-\sin(\frac{\pi}{3}+18\pi)=-\frac{\sqrt{3}}{2},$ $z^{-10}=\displaystyle \frac{1}{1024}(\frac{1}{2}-\frac{\sqrt{3}}{2}i)$ $=\displaystyle \frac{1}{2048}-\frac{\sqrt{3}}{2048}i$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.