Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.2 - Addition and Subtraction Formulas - 7.2 Exercises - Page 551: 49

Answer

$\dfrac{x-y}{\sqrt{1+y^2}\sqrt{1+x^2}}$

Work Step by Step

Let us consider $p=\sin^{-1}x \implies x=\sin p$ and $q=\tan^{-1} y \implies y=\tan q$ We have $\sin x=\dfrac{\tan x}{\sqrt {1+\tan^2 x}}$ and $\cos x=\dfrac{1}{\sqrt {1+\tan^2 x}}$ Now, $\sin (\tan^{-1}x -\tan^{-1}y)=\sin(p-q)$ This gives: $\sin (p-q)=\sin p\cos q-\cos p \sin q$ or, $=(\dfrac{\tan p}{\sqrt {1+\tan^2 p}})(\dfrac{1}{\sqrt {1+\tan^2 q}})-(\dfrac{1}{\sqrt {1+\tan^2 p}}) (\dfrac{\tan q}{\sqrt {1+\tan^2 q}})$ or, $=(\dfrac{x}{\sqrt {1+x^2}})(\dfrac{1}{\sqrt {1+y^2}})-(\dfrac{1}{\sqrt {1+x^2}}) (\dfrac{y}{\sqrt {1+y^2}})$ Hence, $\sin (\tan^{-1}x -\tan^{-1}y)=\dfrac{x-y}{\sqrt{1+y^2}\sqrt{1+x^2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.