Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.2 - Addition and Subtraction Formulas - 7.2 Exercises - Page 551: 41

Answer

$\frac{\tan x-\tan y}{1-\tan x\tan y}=\frac{\sin(x-y)}{\cos(x+y)}$

Work Step by Step

Start from the left side: $\frac{\tan x-\tan y}{1-\tan x\tan y}$ Express tangent as sine divided by cosine: $=\frac{\frac{\sin x}{\cos x}-\frac{\sin y}{\cos y}}{1-\frac{\sin x}{\cos x}*\frac{\sin y}{\cos y}}$ Multiply top and bottom by $\cos x\cos y$: $=\frac{(\frac{\sin x}{\cos x}-\frac{\sin y}{\cos y})\cos x\cos y}{(1-\frac{\sin x}{\cos x}*\frac{\sin y}{\cos y})\cos x\cos y}$ $=\frac{\sin x\cos y-\cos x\sin y}{\cos x\cos y-\sin x\sin y}$ Use the identities $\sin(x-y)=\sin x\cos y-\cos x\sin y$ and $\cos(x+y)=\cos x\cos y-\sin x\sin y$: $=\frac{\sin(x-y)}{\cos(x+y)}$ Since this equals the right side, the identity has been proven.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.