Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.2 - Addition and Subtraction Formulas - 7.2 Exercises - Page 551: 48

Answer

$\tan (\sin^{-1}x+\cos^{-1}y)=\dfrac{xy+\sqrt{1-y^2}\sqrt{1-x^2}}{y\sqrt{1-x^2}-x\sqrt{1-y^2}}$

Work Step by Step

Let us consider $p=\sin^{-1}x \implies x=\sin p$ and $q=\tan^{-1} y \implies y=\tan q$ We have $\tan x=\dfrac{\sin x}{\sqrt {1-\sin^2 x}}$ Now, $\tan (\sin^{-1}x+\cos^{-1}y)=\tan (p+q)$ This gives: $\tan (p+q)=\dfrac{\tan p+\tan q}{1-\tan p\tan q}$ or, $=\dfrac{\dfrac{\sin p}{\sqrt {1-\sin^2 p}}+\dfrac{\sqrt{1-\cos^2 q}}{\cos q}}{1-(\dfrac{\sin p}{\sqrt {1-\sin^2 p}})(\dfrac{\sqrt{1-\cos^2 q}}{\cos q})}$ or, $=\dfrac{\dfrac{x}{\sqrt {1-x^2}}+\dfrac{\sqrt{1-y^2}}{y}}{1-(\dfrac{x}{\sqrt {1-x^2}})(\dfrac{\sqrt{1-y^2}}{y})}$ Hence, $\tan (\sin^{-1}x+\cos^{-1}y)=\dfrac{xy+\sqrt{1-y^2}\sqrt{1-x^2}}{y\sqrt{1-x^2}-x\sqrt{1-y^2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.