Answer
$\sin \left( x+y+z\right) =\sin \left( \left( x+y\right) +z\right) =\sin \left( x+y\right) \cos z+\cos \left( x+y\right) \sin z =\left( \sin x\cos y+\cos x\sin y\right) \cos z+\left( \cos x\cos y-\sin x\sin y\right) \sin z=\sin x\cos y\cos z+\cos x\sin y\cos z+\cos x\cos y\sin z-\sin x\sin y\sin z
$
Work Step by Step
$\sin \left( x+y+z\right) =\sin \left( \left( x+y\right) +z\right) =\sin \left( x+y\right) \cos z+\cos \left( x+y\right) \sin z =\left( \sin x\cos y+\cos x\sin y\right) \cos z+\left( \cos x\cos y-\sin x\sin y\right) \sin z=\sin x\cos y\cos z+\cos x\sin y\cos z+\cos x\cos y\sin z-\sin x\sin y\sin z
$