Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.6 - The Binomial Theorem - 12.6 Exercises - Page 887: 59

Answer

$0$, see explanations.

Work Step by Step

Step 1. Find the pattern of the sums $S_n$: $S_1=\begin{pmatrix} 1\\0 \end{pmatrix}-\begin{pmatrix} 1\\1 \end{pmatrix}=0$, $S_2=\begin{pmatrix} 2\\0 \end{pmatrix}-\begin{pmatrix} 2\\1 \end{pmatrix}+\begin{pmatrix} 2\\2 \end{pmatrix}=1-2+1=0$, $S_3=\begin{pmatrix} 3\\0 \end{pmatrix}-\begin{pmatrix} 3\\1 \end{pmatrix}+\begin{pmatrix} 3\\2 \end{pmatrix}-\begin{pmatrix} 3\\3 \end{pmatrix}=1-3+3-1=0$ Step 2. We can generalize the findings as: $S_n=\begin{pmatrix} n\\0 \end{pmatrix}-\begin{pmatrix} n\\1 \end{pmatrix}+\begin{pmatrix} n\\2 \end{pmatrix}- ... + (-1)^n \begin{pmatrix} n\\n \end{pmatrix}=0$ Step 3. We can prove the above finding by expanding $(1-1)^n$ using the Binomial Theorem (omitting all $1^r$ terms): $(1-1)^n=\begin{pmatrix} n\\0 \end{pmatrix}-\begin{pmatrix} n\\1 \end{pmatrix}+\begin{pmatrix} n\\2 \end{pmatrix}- ... + (-1)^n \begin{pmatrix} n\\n \end{pmatrix}=S_n$. Thus $S_n=(1-1)^n=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.