Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.6 - The Binomial Theorem - 12.6 Exercises - Page 887: 48

Answer

$4x^{3}+6x^{2}h+4xh^{2}+h^{3}$

Work Step by Step

In the numerator, expand $(x+h)^{4}=\left(\begin{array}{l} 4\\ 0 \end{array}\right)x^{4}h^{0}+\left(\begin{array}{l} 4\\ 1 \end{array}\right)x^{3}h^{1}+\left(\begin{array}{l} 4\\ 2 \end{array}\right)x^{3}h^{2}+\left(\begin{array}{l} 4\\ 3 \end{array}\right)x^{1}h^{3}+\left(\begin{array}{l} 4\\ 4 \end{array}\right)h^{4}$ $\displaystyle \frac{(x+h)^{4}-x^{4}}{h}=\frac{x^{4}+4x^{3}h+6x^{2}h^{2}+4xh^{3}+h^{4}-x^{4}}{h}$ $=\displaystyle \frac{4x^{3}h+6x^{2}h^{2}+4xh^{3}+h^{4}}{h}$ ..factor out h in the numerator... $=\displaystyle \frac{h(4x^{3}+6x^{2}h+4xh^{2}+h^{3})}{h}$ ... reduce ... $=4x^{3}+6x^{2}h+4xh^{2}+h^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.