Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.6 - The Binomial Theorem - 12.6 Exercises - Page 887: 51

Answer

please see step-by-step

Work Step by Step

(see page 881) $n!=n(n-1)\cdot...\cdot 2\cdot 1,$ for $ n\in \mathbb{N}$ $0!=1$ $\displaystyle \left(\begin{array}{l} n\\ r \end{array}\right)=\frac{n!}{r!(n-r)!}$ ---------------------- Using these definitions, $\left(\begin{array}{l} n\\ 1 \end{array}\right) =\displaystyle \frac{n!}{1!(n-1)!}$ ... note that: $ n(n-1)\cdot...\cdot 2\cdot 1=n(n-1)! ...$ $=\displaystyle \frac{n(n-1)!}{1(n-1)!}=\qquad$reduce $(n-1)!$ ... $=\displaystyle \frac{n}{1}=n$ $\left(\begin{array}{l} n\\ n-1 \end{array}\right) =\displaystyle \frac{n!}{(n-1)![n-(n-1)]!}$ ... note that $ n(n-1)\cdot...\cdot 2\cdot 1=n(n-1)! ...$ $=\displaystyle \frac{n(n-1)!}{(n-1)!1}=n$. So, $\left(\begin{array}{l} n\\ 1 \end{array}\right)=\left(\begin{array}{l} n\\ n-1 \end{array}\right) =n$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.