Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.6 - The Binomial Theorem - 12.6 Exercises - Page 887: 58

Answer

$2^n$, see explanations.

Work Step by Step

Step 1. Find the sums $S_n$ for different $n$-values: $S_1=2=2^1, S_2=4=2^2, S_3=8=2^3, S_4=16=2^4, S_5=32=2^5, ...$ Step 2. The sum of the $n$th row is given by $S_n=2^n$ Ste[ 3. Expand $(1+1)^n$ using Binomial Theorem (omitting all $1^r$ terms): $(1+1)^n=\begin{pmatrix} n\\0 \end{pmatrix}+\begin{pmatrix} n\\1 \end{pmatrix}+\begin{pmatrix} n\\2 \end{pmatrix}+...+\begin{pmatrix} n\\n \end{pmatrix}=S_n$. Thus we have $S_n=(1+1)^n=2^n$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.