Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.6 - The Binomial Theorem - 12.6 Exercises - Page 887: 47

Answer

$3x^{2}+3xh+h^{2}$

Work Step by Step

In the numerator, expand $(x+h)^{3}=\left(\begin{array}{l} 3\\ 0 \end{array}\right)x^{3}h^{0}+\left(\begin{array}{l} 3\\ 1 \end{array}\right)x^{2}h^{1}+\left(\begin{array}{l} 3\\ 2 \end{array}\right)x^{1}h^{2}+\left(\begin{array}{l} 3\\ 3 \end{array}\right)h^{5}$ $\displaystyle \frac{(x+h)^{3}-x^{3}}{h}=\frac{x^{3}+3x^{2}h+3xh^{2}+h^{3}-x^{3}}{h}$ $=\displaystyle \frac{3x^{2}h+3xh^{2}+h^{3}}{h}$ ..factor out h in the numerator... $=\displaystyle \frac{h(3x^{2}+3xh+h^{2})}{h}$ ...reduce ... $=3x^{2}+3xh+h^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.