Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 12 - Section 12.6 - The Binomial Theorem - 12.6 Exercises - Page 887: 53

Answer

See explanations.

Work Step by Step

(a) $LHS=\begin{pmatrix} n\\r-1 \end{pmatrix}+\begin{pmatrix} n\\r \end{pmatrix}=\frac{n!}{(r-1)!(n-r+1)!}+\frac{n!}{r!(n-r)!}$ (b) $r!=r(r-1)!$ and $(n-r+1)!=(n-r+1)(n-r)!$, thus $r!(n-r+1)!$ is a common denominator of the fractions in part (a). (c) $LHS=\frac{rn!}{r(r-1)!(n-r+1)!}+\frac{(n-r+1)n!}{r!(n-r+1)(n-r)!}=\frac{n!(r+n-r+1)}{r!(n-r+1)!}==\frac{(n+1)!}{r!(n-r+1)!}$. $RHS=\begin{pmatrix} n+1\\r \end{pmatrix}=\frac{(n+1)!}{r!(n+1-r)!}=LHS$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.