Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.1 Composite Functions - 5.1 Assess Your Understanding - Page 255: 32

Answer

a) $\dfrac{2}{3x+2}$; $D=\left(-\infty,-\dfrac{2}{3}\right)\cup\left(-\dfrac{2}{3},0\right)\cup\left(0,\infty\right)$ b) $\dfrac{2x+6}{x}$; $D=(-\infty,-3)\cup(-3,0)\cup(0,\infty)$ c) $\dfrac{x}{4x+9}$; $D=\left(-\infty,-3\right)\cup\left(-3-\dfrac{9}{4}-\dfrac{9}{4}\right)\cup\left(1,\infty\right)$ d) $x$; $D=(-\infty,0)\cup(0,\infty)$

Work Step by Step

We are given the functions: $f(x)=\dfrac{x}{x+3}$ $g(x)=\dfrac{2}{x}$ Let's note: $D_f$=the domain of $f$ $D_g$=the domain of $g$ We have: $D_f=(-\infty,-3)\cup(-3,\infty)$ $D_g=(-\infty,0)\cup(0,\infty)$ a) Determine $f\circ g$ and its domain $D_{f\circ g}$: $(f\circ g)(x)=f(g(x))=f\left(\dfrac{2}{x}\right)=\dfrac{\dfrac{2}{x}}{\dfrac{2}{x}+3}=\dfrac{2}{3x+2}$ As $D_g=(-\infty,0)\cup(0,\infty)$ we exclude 0 from the domain of $f\circ g$. Also the domain of $f$ doesn't include -3, so $g(x)\not=-3$. Solve: $g(x)=-3$ $\dfrac{2}{x}=-3$ $x=-\dfrac{2}{3}$ So we also exclude $-\dfrac{2}{3}$ from the domain of $f\circ g$. We got: $D_{f\circ g}=\left(-\infty,-\dfrac{2}{3}\right)\cup\left(-\dfrac{2}{3},0\right)\cup\left(0,\infty\right)$ b) Determine $g\circ f$ and its domain $D_{g\circ f}$: $(g\circ f)(x)=g(f(x))=g\left(\dfrac{x}{x+3}\right)=\dfrac{2}{\dfrac{x}{x+3}}=\dfrac{2(x+3}{x}=\dfrac{2x+6}{x}$ As $D_f=(-\infty,-3)\cup(-3,\infty)$ we exclude -3 from the domain of $g\circ f$. Also the domain of $g$ doesn't include 0, so $f(x)\not=0$. Solve: $f(x)=0$ $\dfrac{x}{x+3}=0$ $x=0$ We exclude 0 from the domain of $f\circ g$ also. We got: $D_{g\circ f}=(-\infty,-3)\cup(-3,0)\cup(0,\infty)$ c) Determine $f\circ f$ and its domain $D_{f\circ f}$: $(f\circ f)(x)=f(f(x))=f\left(\dfrac{x}{x+3}\right)=\dfrac{\dfrac{x}{x+3}}{\dfrac{x}{x+3}+3}=\dfrac{x}{4x+9}$ As $D_f=(-\infty,-3)\cup(-3,\infty)$ we exclude -3 from the domain of $f\circ f$. Also the domain of $f$ doesn't include -3, so $f(x)\not=-3$. Solve: $f(x)=-3$ $\dfrac{x}{x+3}=-3$ $-3x-9=x$ $4x=-9$ $x=-\dfrac{9}{4}$ We exclude $-\dfrac{9}{4}$ from the domain of $f\circ f$. We got: $D_{f\circ f}=\left(-\infty,-3\right)\cup\left(-3-\dfrac{9}{4}-\dfrac{9}{4}\right)\cup\left(1,\infty\right)$ d) Determine $g\circ g$ and its domain $D_{g\circ g}$: $(g\circ g)(x)=g(g(x))=g\left(\dfrac{2}{x}\right)=\dfrac{2}{\dfrac{2}{x}}=x$ As $D_g=(-\infty,0)\cup(0,\infty)$ we exclude 0 from the domain of $g\circ g$. Also the domain of $g$ doesn't include 0, so $g(x)\not=0$. Solve: $g(x)=0$ $\dfrac{2}{x}=0$ No solution We got: $D_{g\circ g}=(-\infty,0)\cup(0,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.