Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.1 Composite Functions - 5.1 Assess Your Understanding - Page 255: 28

Answer

a) $4x^4+12x^2+10$; $D=(-\infty,\infty)$ b) $2x^4+4x^2+5$; $D=(-\infty,\infty)$ c) $x^4+2x^2+2$; $D=(-\infty,\infty)$ d) $8x^4+24x^2+21$; $D=(-\infty,\infty)$

Work Step by Step

We are given the functions: $f(x)=x^2+1$ $g(x)=2x^2+3$ Let's note: $D_f$=the domain of $f$ $D_g$=the domain of $g$ We have: $D_f=(-\infty,\infty)$ $D_g=(-\infty,\infty)$ a) Determine $f\circ g$ and its domain $D_{f\circ g}$: $(f\circ g)(x)=f(g(x))=f(2x^2+3)=(2x^2+3)^2+1=4x^4+12x^2+10$ $D_{f\circ g}=(-\infty,\infty)$ b) Determine $g\circ f$ and its domain $D_{g\circ f}$: $(g\circ f)(x)=g(f(x))=g(x^2+1)=2(x^2+1)^2+3=2x^4+4x^2+5$ $D_{g\circ f}=(-\infty,\infty)$ c) Determine $f\circ f$ and its domain $D_{f\circ f}$: $(f\circ f)(x)=f(f(x))=f(x^2+1)=(x^2+1)^2+1=x^4+2x^2+2$ $D_{f\circ f}=(-\infty,\infty)$ d) Determine $g\circ g$ and its domain $D_{g\circ g}$: $(g\circ g)(x)=g(g(x))=g(2x^2+3)=2(2x^2+3)^2+3=8x^4+24x^2+21$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.