Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.1 Composite Functions - 5.1 Assess Your Understanding - Page 255: 29

Answer

a) $\dfrac{3x}{2-x}$; $D=(-\infty,0)\cup(0,2)\cup(2,\infty)$ b) $\dfrac{2x-2}{3}$; $D=(-\infty,1)\cup(1,\infty)$ c) $\dfrac{3x-3}{4-x}$; $D=(-\infty,1)\cup(1,4)\cup(4,\infty)$ d) $x$; $D=(-\infty,0)\cup(0,\infty)$

Work Step by Step

We are given the functions: $f(x)=\dfrac{3}{x-1}$ $g(x)=\dfrac{2}{x}$ Let's note: $D_f$=the domain of $f$ $D_g$=the domain of $g$ We have: $D_f=(-\infty,1)\cup(1,\infty)$ $D_g=(-\infty,0)\cup(0,\infty)$ a) Determine $f\circ g$ and its domain $D_{f\circ g}$: $(f\circ g)(x)=f(g(x))=f\left(\dfrac{2}{x}\right)=\dfrac{3}{\dfrac{2}{x}-1}=\dfrac{3}{\dfrac{2-x}{x}}=\dfrac{3x}{2-x}$ As $D_g=(-\infty,0)\cup(0,\infty)$ we exclude 0 from the domain of $f\circ g$. Also the domain of $f$ doesn't include 1, so $g(x)\not=1$. Solve: $g(x)=1$ $\dfrac{2}{x}=1$ $x=2$ So we also exclude 2 from the domain of $f\circ g$. We got: $D_{f\circ g}=(-\infty,0)\cup(0,2)\cup(2,\infty)$ b) Determine $g\circ f$ and its domain $D_{g\circ f}$: $(g\circ f)(x)=g(f(x))=g\left(\dfrac{3}{x-1}\right)=\dfrac{2}{\dfrac{3}{x-1}}=\dfrac{2(x-1)}{3}=\dfrac{2x-2}{3}$ As $D_f=(-\infty,1)\cup(1,\infty)$ we exclude 1 from the domain of $g\circ f$. Also the domain of $g$ doesn't include 0, so $f(x)\not=0$. Solve: $f(x)=0$ $\dfrac{3}{x-1}=0$ No solution We got: $D_{g\circ f}=(-\infty,1)\cup(1,\infty)$ c) Determine $f\circ f$ and its domain $D_{f\circ f}$: $(f\circ f)(x)=f(f(x))=f\left(\dfrac{3}{x-1}\right)=\dfrac{3}{\dfrac{3}{x-1}-1}=\dfrac{3}{\dfrac{4-x}{x-1}}=\dfrac{3(x-1)}{4-x}=\dfrac{3x-3}{4-x}$ As $D_f=(-\infty,1)\cup(1,\infty)$ we exclude 1 from the domain of $f\circ f$. Also the domain of $f$ doesn't include 1, so $f(x)\not=1$. Solve: $f(x)=1$ $\dfrac{3}{x-1}=1$ $x-1=3$ $x=4$ So we also exclude 4 from the domain of $f\circ f$. We got: $D_{f\circ f}=(-\infty,1)\cup(1,4)\cup(4,\infty)$ d) Determine $g\circ g$ and its domain $D_{g\circ g}$: $(g\circ g)(x)=g(g(x))=g\left(\dfrac{2}{x}\right)=\dfrac{2}{\dfrac{2}{x}}=x$ As $D_g=(-\infty,0)\cup(0,\infty)$ we exclude 0 from the domain of $g\circ g$. Also the domain of $g$ doesn't include 0, so $g(x)\not=0$. Solve: $g(x)=0$ $\dfrac{2}{x}=0$ No solution We got: $D_{g\circ g}=(-\infty,0)\cup(0,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.