Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.1 - Sequences - Exercises 10.1 - Page 570: 87

Answer

converges to $\dfrac{1}{2} $

Work Step by Step

Let $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} [n-\sqrt {n^2-n}]$ Here, $ \lim\limits_{n \to \infty} [n-\sqrt {n^2-n}]=\infty \cdot \infty$ This shows that the limit has an Indeterminate form so, we will use L-Hospital's rule. This implies that $ \lim\limits_{n \to \infty} [n-\sqrt {n^2-n}]= \lim\limits_{n \to \infty} [n-\sqrt {n^2-n}] \times \dfrac{[n+ \sqrt {n^2-n}]}{[n +\sqrt {n^2-n}]}$ and $\lim\limits_{n \to \infty} \dfrac{n}{n +\sqrt {n^2-n}} (\dfrac{\dfrac{1}{n}}{\dfrac{1}{n}})=\lim\limits_{n \to \infty} \dfrac{1}{1+\sqrt {(1-\dfrac{1}{n})}}=\dfrac{1}{2} $ Hence, {$a_n$} is Convergent and converges to $\dfrac{1}{2} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.