Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.1 - Sequences - Exercises 10.1 - Page 570: 69

Answer

converges to $e^{2/3}$

Work Step by Step

As we know that when $x \gt 0$ so, $\lim\limits_{n \to \infty} (1+\dfrac{x}{n})^{n}=e^x$ Let $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} (\dfrac{3n+1}{3n-1})^{n}$ This implies that $\lim\limits_{n \to \infty} a_n= \lim\limits_{n \to \infty} (1+\dfrac{2}{3n-1})^{n}=e^2$ Let us consider $f(x)=x^{(\frac{n}{3n-1})} $ so, $ f(e^2)=(e^2)^{({\frac{n}{3n-1}})}$ or, $\lim\limits_{n \to \infty} (e^2)^{({\frac{n}{3n-1}})}=e^{2/3}$ Thus, $\lim\limits_{n \to \infty} a_n=e^{2/3}$ and {$a_n$} converges to $e^{2/3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.