Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 16 - Section 16.2 - Derivatives of Trigonometric Functions and Applications - Exercises - Page 1169: 7

Answer

$$r'\left( x \right) = \cos x - x\sin x + 2x$$

Work Step by Step

$$\eqalign{ & r\left( x \right) = x\cos x + {x^2} + 1 \cr & {\text{Differentiate}} \cr & r'\left( x \right) = \frac{d}{{dx}}\left[ {x\cos x + {x^2} + 1} \right] \cr & r'\left( x \right) = \frac{d}{{dx}}\left[ {x\cos x} \right] + \frac{d}{{dx}}\left[ {{x^2} + 1} \right] \cr & {\text{By the product rule}} \cr & r'\left( x \right) = \cos x\frac{d}{{dx}}\left[ x \right] + x\frac{d}{{dx}}\left[ {\cos x} \right] + \frac{d}{{dx}}\left[ {{x^2} + 1} \right] \cr & {\text{Computing derivatives}} \cr & r'\left( x \right) = \cos x\left( 1 \right) + x\left( { - \sin x} \right) + 2x \cr & r'\left( x \right) = \cos x - x\sin x + 2x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.