Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 16 - Section 16.2 - Derivatives of Trigonometric Functions and Applications - Exercises - Page 1169: 10

Answer

$S^{\prime}(x)=\dfrac{-2x \tan x}{ (x^2-1)^{2}} +\dfrac{ \sec^2x}{(x^2-1)}$

Work Step by Step

We have: $S(x)=\dfrac{\tan x}{(x^2-1)}=\tan x (x^2-1)^{-1}$ We need to differentiate both sides with respect to $x$. $S^{\prime}(x)=\dfrac{d}{dx} [\tan x (x^2-1)^{-1}]\\=\tan x \times (-1)(x^2-1)^{-2} \dfrac{d}{dx}(x^2-1)+(x^2-1)^{-1} \times \sec^2x\\=-\tan x (x^2-1)^{-2} \times 2x+\dfrac{ \sec^2x}{(x^2-1)}$ Therefore, $S^{\prime}(x)=\dfrac{-2x \tan x}{ (x^2-1)^{2}} +\dfrac{ \sec^2x}{(x^2-1)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.