Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 16 - Section 16.2 - Derivatives of Trigonometric Functions and Applications - Exercises - Page 1169: 3

Answer

$$g'\left( x \right) = \sin x + \tan x\sec x$$

Work Step by Step

$$\eqalign{ & g\left( x \right) = \left( {\sin x} \right)\left( {\tan x} \right) \cr & {\text{Differentiate}} \cr & g'\left( x \right) = \frac{d}{{dx}}\left[ {\left( {\sin x} \right)\left( {\tan x} \right)} \right] \cr & {\text{By the product rule}} \cr & g'\left( x \right) = \tan x\frac{d}{{dx}}\left[ {\sin x} \right] + \sin x\frac{d}{{dx}}\left[ {\tan x} \right] \cr & g'\left( x \right) = \tan x\left( {\cos x} \right) + \sin x\left( {{{\sec }^2}x} \right) \cr & {\text{Simplifying}} \cr & g'\left( x \right) = \left( {\frac{{\sin x}}{{\cos x}}} \right)\left( {\cos x} \right) + \sin x\left( {\frac{1}{{{{\cos }^2}x}}} \right) \cr & g'\left( x \right) = \sin x + \tan x\sec x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.