Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 16 - Section 16.2 - Derivatives of Trigonometric Functions and Applications - Exercises - Page 1169: 28

Answer

$$w'\left( x \right) = - \left( {\sin x} \right)\sec \left( {{x^2} - 1} \right) + 2x\left( {\cos x} \right)\sec \left( {{x^2} - 1} \right)\tan \left( {{x^2} - 1} \right)$$

Work Step by Step

$$\eqalign{ & w\left( x \right) = \cos x\sec \left( {{x^2} - 1} \right) \cr & {\text{Differentiate}} \cr & w'\left( x \right) = \frac{d}{{dx}}\left[ {\cos x\sec \left( {{x^2} - 1} \right)} \right] \cr & {\text{By the product rule}} \cr & w'\left( x \right) = \sec \left( {{x^2} - 1} \right)\frac{d}{{dx}}\left[ {\cos x} \right] + \cos x\frac{d}{{dx}}\left[ {\sec \left( {{x^2} - 1} \right)} \right] \cr & {\text{Computing derivatives}} \cr & w'\left( x \right) = \sec \left( {{x^2} - 1} \right)\left( { - \sin x} \right) + \cos x\sec \left( {{x^2} - 1} \right)\tan \left( {{x^2} - 1} \right)\left( {2x} \right) \cr & {\text{Simplifying}} \cr & w'\left( x \right) = - \left( {\sin x} \right)\sec \left( {{x^2} - 1} \right) + 2x\left( {\cos x} \right)\sec \left( {{x^2} - 1} \right)\tan \left( {{x^2} - 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.