Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 16 - Section 16.2 - Derivatives of Trigonometric Functions and Applications - Exercises - Page 1169: 23

Answer

$$u'\left( x \right) = - \left( {2x - 1} \right)\sin \left( {{x^2} - x} \right)$$

Work Step by Step

$$\eqalign{ & u\left( x \right) = \cos \left( {{x^2} - x} \right) \cr & {\text{Differentiate}} \cr & u'\left( x \right) = \frac{d}{{dx}}\left[ {\cos \left( {{x^2} - x} \right)} \right] \cr & {\text{Use the chain rule}} \cr & u'\left( x \right) = - \sin \left( {{x^2} - x} \right)\frac{d}{{dx}}\left[ {{x^2} - x} \right] \cr & u'\left( x \right) = - \sin \left( {{x^2} - x} \right)\left( {2x - 1} \right) \cr & u'\left( x \right) = - \left( {2x - 1} \right)\sin \left( {{x^2} - x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.