Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter R - Algebra Reference - R.6 Exponents - R.6 Exercises: 17

Answer

$\displaystyle \frac{x^{5}}{3y^{3}}$

Work Step by Step

We use the Properties of Exponents, step by step... P0. $a^{0}=1,\ a^{1}=a$ P1. $a^{m}\cdot a^{n}=a^{m+n}$ P2. $\displaystyle \frac{a^{m}}{a^{n}}=a^{m-n}$ , $ \displaystyle \frac{1}{a^{n}}=a^{-n}$ P3. $(a^{m})^{n}=a^{mn}$ P4. $(ab)^{m}=a^{m} b^{m}$ P5. $(\displaystyle \frac{a}{b})^{m}=\frac{a^{m}}{b^{m}}$ P6. Rational exponents: $a^{m/n}=(a^{1/n})^{m}\sqrt[n]{a^{m}}$ ----------------------------- $\displaystyle \frac{3^{-1}\cdot x\cdot y^{2}}{x^{-4}y^{5}}=3^{-1}\cdot\frac{x^{1}}{x^{-4}}\cdot\frac{y^{2}}{y^{5}}$= ... P$2$... $=3^{-1}\cdot x^{1-(-4)}\cdot y^{2-5}$ $=3^{-1}\cdot x^{5}\cdot y^{-3}$= ... P$2$...$= \displaystyle \frac{x^{5}}{3y^{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.