## Calculus with Applications (10th Edition)

Published by Pearson

# Chapter 7 - Integration - 7.1 Antiderivatives - 7.1 Exercises - Page 366: 16

#### Answer

$\frac{{{x^7}}}{7} + {x^4} + {x^3} + C$

#### Work Step by Step

$\begin{gathered} \int_{}^{} {{x^2}\,\left( {{x^4} + 4x + 3} \right)dx} \hfill \\ Multiplying \hfill \\ \int_{}^{} {\,\left( {{x^6} + 4{x^3} + 3{x^2}} \right)dx} \hfill \\ using\,\,the\,\,sum\,\,and\,difference\,\,rules \hfill \\ \int_{}^{} {{x^6}dx} + \int_{}^{} {4{x^3}dx} + \int_{}^{} {3{x^2}dx} \hfill \\ Use\,\,the\,\,power\,\,rule \hfill \\ \int_{}^{} {{x^n}dx} = \frac{{{x^{n + 1}}}}{{n + 1}} + C \hfill \\ \frac{{{x^{6 + 1}}}}{{6 + 1}} + 4\,\left( {\frac{{{x^{3 + 1}}}}{{3 + 1}}} \right) + 3\,\left( {\frac{{{x^2} + 1}}{{2 + 1}}} \right) + C \hfill \\ \frac{{{x^7}}}{7} + {x^4} + {x^3} + C \hfill \\ \end{gathered}$

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.