Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 9

Answer

$$ 2\tan^{-1}(\sqrt{x})+C$$

Work Step by Step

Given $$\int \frac{d x}{x^{3 / 2}+x^{1 / 2}}$$ Let $$ u^2 = x\ \ \ \ \ \ \ \ \ \ \ 2udu=dx$$ Then \begin{align*} \int \frac{d x}{x^{3 / 2}+x^{1 / 2}}&=\int \frac{2udu}{u^3+u}\\ &= \int \frac{2du}{u^2+1}\\ &= 2\tan^{-1}(u)+C\\ &= 2\tan^{-1}(\sqrt{x})+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.