Answer
$$ 2\tan^{-1}(\sqrt{x})+C$$
Work Step by Step
Given $$\int \frac{d x}{x^{3 / 2}+x^{1 / 2}}$$
Let
$$ u^2 = x\ \ \ \ \ \ \ \ \ \ \ 2udu=dx$$
Then
\begin{align*}
\int \frac{d x}{x^{3 / 2}+x^{1 / 2}}&=\int \frac{2udu}{u^3+u}\\
&= \int \frac{2du}{u^2+1}\\
&= 2\tan^{-1}(u)+C\\
&= 2\tan^{-1}(\sqrt{x})+C
\end{align*}