Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 11

Answer

$$ -\frac{\tan ^{-1} x}{x}+\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+C$$

Work Step by Step

Given $$\int x^{-2} \tan ^{-1} x d x$$ Let \begin{align*} u&=\tan ^{-1} x \ \ \ \ \ \ \ \ \ \ \ dv= x^{-2}dx\\ du&= \frac{dx}{1+x^2}\ \ \ \ \ \ \ \ \ v= -x^{-1} \end{align*} Then \begin{aligned} \int x^{-2} \tan ^{-1} x d x& =-\frac{\tan ^{-1} x}{x}+\int \frac{1}{x\left(x^{2}+1\right)} d x \end{aligned} Since \begin{aligned} \frac{1}{x\left(x^{2}+1\right)} &=\frac{A}{x}+\frac{B x+C}{\left(x^{2}+1\right)} \\ 1 &=A\left(x^{2}+1\right)+(B x+C) x \end{aligned} At $x=0$, $A=1$, and by comparing the coefficients, we get $C=0,\ \ B=-1$: \begin{aligned} \int \frac{1}{x\left(x^{2}+1\right)} d x &=\int \frac{1}{x} d x-\int \frac{x}{\left(x^{2}+1\right)} d x \\ &=\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+C \end{aligned} Hence $$\int x^{-2} \tan ^{-1} x d x=-\frac{\tan ^{-1} x}{x}+\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.