Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 40



Work Step by Step

Given $$\int \frac{d x}{(x-b)^{2}+4}$$ Let $$u=x-b\ \ \ \ \ \ du=dx$$ Then \begin{align*} \int \frac{d x}{(x-b)^{2}+4}&=\int \frac{d u}{u^{2}+4}\\ &= \frac{1}{2}\tan^{-1}\frac{u}{2}+C\\ &= \frac{1}{2}\tan^{-1}\frac{x-b}{2}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.