Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions - Exercises - Page 415: 37

Answer

$$\frac{-1}{2}[\tanh ^{-1} x]^2+C$$

Work Step by Step

Given $$\int \frac{\tanh ^{-1} x}{x^{2}-1} d x$$ Let $$u=\tanh^{-1}x\ \ \ \ \ \ \ \Rightarrow \ \ \ \ \ du=\frac{dx}{1-x^2} $$ Then \begin{align*} \int \frac{\tanh ^{-1} x}{x^{2}-1} d x&=\int -udu\\ &=\frac{-1}{2}u^2+C\\ &= \frac{-1}{2}[\tanh ^{-1} x]^2+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.