Answer
$$\frac{-1}{2}[\tanh ^{-1} x]^2+C$$
Work Step by Step
Given $$\int \frac{\tanh ^{-1} x}{x^{2}-1} d x$$
Let
$$u=\tanh^{-1}x\ \ \ \ \ \ \ \Rightarrow \ \ \ \ \ du=\frac{dx}{1-x^2} $$
Then
\begin{align*}
\int \frac{\tanh ^{-1} x}{x^{2}-1} d x&=\int -udu\\
&=\frac{-1}{2}u^2+C\\
&= \frac{-1}{2}[\tanh ^{-1} x]^2+C
\end{align*}